I ordered the kit from Evil Mad Scientist as soon as it was made available.
The kit quality is simply superb. Extremely high quality PCBs and components! Everything is absolutely "top-notch", including the nice laser-cut enclosure (available in a few different styles). All components are sorted by type in labeled plastic bags and packed very well. Included in the kit are a few spare parts - LEDs and mounting hardware. The manual is not provided with the kit - it is available for download and it can be printed. A few words about the manual - probably the best kit manual I've seen lately (maybe even over-done) and it beats Heathkit! The kit is designed for beginners and the manual even includes a section on soldering. If you never held soldering iron, you should be still OK - just follow the instructions.
The build is straightforward. The most tedious part is installing and aligning the 72 LEDs located on 3 PCBs. This is the main BLUE PCB - it includes 30 blue LEDs for the "seconds hand" as well as the AVR controller and most of the components. The clock has 2 seconds and 2 minutes resolution - in other words - the "seconds" hand moves every 2 seconds and the "minutes" hand - every 2 minutes. This is actually not too bad - imagine dealing with 132 LEDs for full resolution - it would be crazy ! When LEDs are switched on, it can be done with "fading" which gives a nice smooth "analog feel" and makes up for the 2 seconds resolution (it actually interpolates the "in between" state)
There is a connector for accessing and re-programming the ATmega chip. I wish they had provided a socket for the IC in the kit. I felt that it is much safer to play with the firmware if the PIC was socketed, so I added a socket. There is also a provision for an on-board IC voltage regulator should one decides to use non-standard power supply. The design is very simple - ATmega168 chip, crystal oscillator (20ppm), a few current limiting resistors, 3 buttons and a charlieplexed matrix of LEDs. The source code for the firmware is open and the schematics are freely available for download - all in the spirit of the Arduino platform.
This picture shows the main board with the nice "bulbdial" face installed on stand-offs. There is machined gnomon in the center which casts the "shadow hands" The GREEN PCB is for the "minutes" hand and it has 30 green LEDs. The picture also shows the special laser-cut "LED leads forming tool" . All LEDs need to be pointed downward and aligned to produce nice centered hot-spot. There is an alignment mode in the firmware to assist this task. One should gently bend the LEDs. Sometimes it is necessary one of the solder joints of the LED to be heated with the soldering iron, while aligning the LED body in order to reduce the mechanical stress.
This the last of the 3 PCBs - the "hour hand" RED PCB. It has 12 red color LEDs.
There are 4 modes of operation - Time Displaying Mode, Time Setting Mode, Alignment Mode and Optional Configuration Mode. The modes are selected by pressing and holding combinations of buttons. Once the clock is powered, it goes into Time Displaying Mode. In this mode the Z button is Sleep ( it turns off the display) and "+" and "-" control the brightness level.
There are 7 user-adjustable brightness levels and even a "white balance mode", where the brightness of each color can be adjusted separately. At the highest brightness level the clock could almost serve as a night light. All of the configuration variables are stored in the ATmega's eeprom space. There is also a user-selectable "rear-projection mode" where the movement is reversed (CCW) in order to be viewed through the back if the clock is equipped with a semi-transparent face.
The Bulbidal clock is a fun project and the resulting clock is just beautiful to look at.