In high winds, tall trees sway a lot - the taller the tree is - the bigger is the amplitude. What makes the matter worse is the fact that different trees sway with different frequency and amplitude due to the specifics of each tree - height, canopy, etc. The wind could also blow from different directions for each tree if they are far apart.
Wire antennas are often stretched between tree-tops where the swing is in it's maximum.
In other words, during strong wind almost everything works against the antenna, putting it at a great mechanical stress.
One solution for long wire antennas is to let it sag - the sag could provide enough slack in high wind situation so the antenna is never tensioned to the maximum thus reducing the chance for break. Such approach works fine for long-wire, end-fed antennas.
When it comes to dipoles, one would want the antenna as high as possible. In addition, preserving the flat-top geometry of the antenna also helps the radiation pattern so people tend to tension them a lot.
In order to protect my G5RV from breaking due to tensile stress and to reduce the unnecessary sag in calm weather at the same time, I made a "tension breaker" (it is more of a "fuse" actually)
The idea is very simple - to create an artificial "weak point". If high wind occurs and the sway of the tree-tops puts the antenna under excessive stress, the "tension breaker" opens at a predetermined tension load, releasing more slack in the antenna rope and relieving the stress by letting the antenna to sag. When the weather calms down, the "breaker" could be easily "reset", stretching the antenna back to it's original state.
The trick is to have such weak point to break only at a load dangerous for the antenna and withstand the load of moderate wind conditions while keeping the antenna tensioned for minimal sag.